Beach cusps: shoreline symmetry; By Gary Griggs

Posted In Beach of the Month, Features
Dec
1

1cusps

By Gary Griggs, Distinguished Professor of Earth and Planetary Sciences, Director Institute of Marine Sciences, University of California, Santa Cruz, California

There are many strikingly regular patterns in nature that have long intrigued scientists and non-scientists alike. Beach cusps are one of these. Coastal geologists and careful beach observers or frequent visitors may have noticed these evenly spaced, semicircular, scalloped-shaped patterns along the shoreline from time to time, or perhaps not at all. These very uniform patterns seem to be far more frequent on certain beaches than others, and are much more visible from an elevated vantage point, like a cliff top or in an aerial photograph, than when standing on the beach. They can form on sand or gravel beaches and can range in width or diameter from 25 to over 200 feet, but are very uniform or strikingly regular on any particular shoreline at any point in time.

The cusp spacing is shorter in gravel beaches and longer on finer-grained sandy beaches. These very symmetrical features are far easier to recognize and appreciate, however, than to figure out or understand, and we could just leave it at that and appreciate them for their symmetry. But being curious scientists, we usually look for answers to the mysteries we find in nature.

Published writing on these features goes back nearly a century to 1919 when one of the first coastal geomorphologists, Douglas Johnson, described these unique landforms.

“There are many strikingly regular patterns in nature that have long intrigued scientists and non-scientists alike. Beach cusps are one of these. ”
— Gary Griggs

Beach cusps seem to form most often when waves approach normal or at a right angle to the shoreline. The portion of the broken wave that washes up the beach face is called the swash, and the maximum difference in the run-up of the swash seems to be the dominant influence on the spacing of the cusps.

There have been two prevailing ideas on the formation of these symmetrical shoreline features, although neither is easy to explain and both probably will leave some lingering doubts in the minds of most readers. The earliest idea on the formation of cusps was that they were due to distinct properties of the waves breaking on the shoreline and were, therefore, essentially imposed on the beach by nearshore wave interactions.

In recent years, however, this theory has been essentially displaced by another idea, which involves the somewhat complicated concept known as self-organization. This principle, which has now been reproduced in models, shows that interactions between wave runup on a beach and sediment transport can combine to give rise to instability that soon produces cusps. On a flat beach, areas will develop that have slightly lower relief or elevation than adjacent areas. As waves wash up the beach, they will accelerate or speed up over these lower areas, and cause erosion. These lower areas will deepen gradually to form an embayment. On the other hand, those areas on the beach that are slightly higher will slow down the uprush of the waves, causing sediment to be deposited on top of them. These will evolve to form the horns between the embayments, and together they known as beach cusps.

Somehow, as these cusps begin to form, and they can develop quite quickly as wave conditions along the shoreline change, these features interact or communicate. As a result the patterns of erosion and deposition along the beach face (the cusps) begin to develop a very uniform size and spacing as the beach tries to rearrange itself through erosion and deposition to reduce variations along its surface.

This self-organization process, at least for now, is the favored mechanism used to explain the formation of these widespread and interesting shoreline features. They occur in both small pocket beaches but also may extend for miles down the beach, and can then disappear within a few hours as wave conditions change. Beach cusps are one of those somewhat mysterious natural phenomena that for most of us may simply be best appreciated without trying to completely understand just how they form.

Tags:

More / Beach Of The Month

Beyond Preservation: The Coral Restoration Foundation Bonaire; By Andrew Jalbert

August 1st, 2018

When avid scuba diver and famed Jurassic Park author Michael Crichton first visited Bonaire decades ago, he eloquently described the underwater environment as, “a world of riotous, outrageous color.” Years later, Bonaire has seen some changes but his assessment still largely rings true.

Read More

Management Strategies for Coastal Erosion Processes; By Nelson Rangel-Buitrago

June 1st, 2018

The Special Issue Management Strategies for Coastal Erosion Processes (MSforCEP) presents an international collection of papers related to the implementation of various management strategies for coastal erosion under specific objectives.

Read More

Sand volcanos on a flat and sandy beach in the Netherlands; By Bert Buizer, PhD

May 1st, 2018

In 2013, some interesting water escape structures were observed near the coastal resort of Bergen aan Zee, in the Netherlands.

Read More

Te Pito O Te Henua shore (Rapa Nui or Easter Island): a remote and mysterious place with rare beaches; By Nelson Rangel-Buitrago, William J. Neal & Adriana Gracia

April 1st, 2018

One of the most remote and youngest inhabited volcanic islands in the world is Te Pito o Te Henua Island, or as more commonly known: Easter Island (Rapa Nui or Isla de Pascua). World famous for its mysterious monumental statues (moai) erected by the early Rapa Nui people, the island is located in the southeastern Pacific Ocean nearly 3,650 km west of Chile.

Read More

Newfoundland’s Sandy Beaches: A Glacial Legacy; By William J. Neal & Joseph T. Kelley

February 1st, 2018

“Newfoundland” as a coastal place does not conjure up images of sandy beaches, but rather scenes of wave-cut rocky cliffs, bird rookeries on small rock islands, sea stacks, and boulder and cobble beaches if wave deposits are present. But scattered among the latter are genuine sand beaches.

Read More

Torrevieja, Spain; By Norma J. Longo

January 1st, 2018

Torrevieja, a former fishing village on the southeast coast of Spain (Costa Blanca) in Alicante province, is now a thriving tourist city with a 2016 population of around 85,000, down from a high of over 105,000 in 2013.

Read More

The rugged coast and black sand beaches of the Azores; By Gary Griggs

December 1st, 2017

A soft, white sandy beach on a lush green island is probably the vision many people have of their perfect coastal vacation. Eight hundred and fifty miles west of Portugal and 2400 miles east of Boston lies the lush island of São Miguel in the Azores. It is one of nine islands making up an archipelago spread across 300 miles of the North Atlantic Ocean.

Read More

Colombia’s Tayrona National Natural Park: A Caribbean Coast Gem; By Nelson Rangel-Buitrago & William J. Neal

October 1st, 2017

Colombia’s Caribbean coast has a rich geological, biological and cultural diversity that is reflected in the complex coastal zone extending from the border of Panama to that of Venezuela. One of the most spectacular regions in both this diversity and scenery is the Tayrona National Natural Park (TNNP).

Read More

Archive / Beach Of The Month